THE THERMAL BEHAVIOR OF K-EXCHANGED FORMS OF NATROLITE *

A. YAMAZAKI and R. OTSUKA

Department of Mineral Industry, School of Science and Engineering, Waseda University, 4-1, Okubo 3 Chome, Shinjuku-ku, Tokyo 160 (Japan)

H. NISHIDO

Hiruzen Research Institute, Okayama University of Science, Kamifukuda, Maniwa-gun, Okayama Pref., 717-06 (Japan)

(Received 26 June 1986)

ABSTRACT

A series of K-exchanged forms of natrolite are easily obtained by treatment with KCl solution at room temperature for 1–62 days. The maximum degree of exchange of K is 91.94%. The thermal behavior of the exchanged forms is studied by DTA-TG and high temperature X-ray powder diffraction. The DTA curve of the exchanged form of the 91.94% sample exhibits a single large endotherm at 150°C due to a one-step dehydration, showing the remarkable decrease in dehydration temperature compared with natrolite. The dehydrated phase of natrolite collapses at about 800°C, while destruction of the dehydrated K-form occurs above 1000°C. It is well recognized that the thermal stability of natrolite is increased by Na-K exchange.

INTRODUCTION

The thermal properties of natural natrolite have been studied by many workers [1-6]. However, data for the thermal behavior of cation-exchanged forms of natural natrolite are scanty, and so far as the writers know, only one paper has been published on this subject by Belitskiy [7], leaving many problems to be studied further.

In this note, the thermal behavior of the K-exchanged form of natrolite is briefly reported.

^{*} Dedicated to Professor Syûzô Seki in honor of his contribution to Calorimetry and Thermal Analysis.

EXPERIMENTAL

As a starting material, natrolite from Hashidate, Oomi-cho, Niigata Pref. was used. The sample was carefully purified by hand-picking under binoculars. Chemical analysis of the sample was performed by electron microprobe analysis (EPMA), giving the results in Table 1. X-ray powder data are shown in Table 2. Lattice parameters and cell volume obtained are: a = 18.301(2)Å, b = 18.636(3) Å, c = 6.610(3) Å, V = 2254(2) Å³.

The K-exchanged natrolites were obtained as follows: 200 mg of the natrolite sample (under 200 mesh) was treated in 100 ml of 0.5 or 1 N KCl solution (pH 8–9) in a polyethylene bottle at 25°C for 1–62 days. The products were dried at 60°C, and then kept in a desiccator for at least 3 days in which relative humidity was maintained at about 55% by saturated Mg(NO₃)₂ solution, until they were subjected to subsequent measurements.

K, Na, Ca and Mg contents of all products were determined by atomic absorption spectroscopy.

DTA and TG curves were recorded with a Rigaku Thermoflex TG-DTA unit in static air, on a 15.0-mg sample at a programmed heating rate of 10 K min⁻¹. The sample was covered with 5.0 mg of calcined alumina.

High temperature X-ray powder patterns were obtained using a Rigaku Geigerflex D6C with a high temperature attachment.

The sample was heated in static air to a pre-determined temperature at a heating rate of 10 K min⁻¹, kept for an hour at that temperature, and then subjected to X-ray diffraction.

Compound	Wt.%	Atoms per unit cell		
SiO ₂	46.44	Si	23.84	
Al_2O_3	26.53	Al	16.05	
Fe ₂ O ₃	0.00	Fe ³⁺	0.00	
MgO	0.00	Mg	0.00	
CaO	0.13	Ca	0.07	
K ₂ O	0.06	K	0.04	
Na ₂ O	16.35	Na	14.26	
H ₂ O	10.71	H ₂ O	18.34	
Total	100.23	0	80	

TABLE 1

Chemical composition of natrolite from Hashidate, Oomi-cho, Niigata Pref.

Si/Al = 1.485.

E (balance error) = -2.4%.

$$E = \frac{(Al + Fe^{3+}) - \{Na + K + 2(Mg + Ca)\}}{\{Na + K + 2(Mg + Ca)\}} \times 100\%$$

Analyzed by JEOL JXA 733 electron microprobe analyzer. Water content was obtained by TG. Correction was made by the method of Bence and Albee.

h	k	1	Natrolite ^a		K-exchanged form ^b	
			<u>d</u> (Å)	I/I_0	<u>d</u> (Å)	I/I_0
2	2	0	6.528	100	6.920	100
1	1	1	5.883	22	5.883	4
0	4	0	4.662	25		
4	0	0	4.574	16		
1	3	1	4.375	41	4.489	12
3	1	1	4.349	39	4.457	12
2	4	0	4.150	32		
4	2	0	4.097	18	4.348	2
3	3	1	3.632	1		
4	4	0	3.262	11	3.461	20
1	5	1	3.194	19	3.324	9
5	1	1	3.151	24	3.275	8
2	0	2	3.087	12	3.081	20
2	6	0	2.940	16	3.126	6
6	2	0	2.900	7		
3	5	1	2.864	42	2.996	50
5	3	1	2.842	34	2.969	80
2	2	2			2.940	18
4	2	2	2.577	6	2.597	5
1	7	1	2.446	10	2.574	8
7	1	1	2.409	10	2.521	6
0	8	0	2.327	5	2.478	2
3	7	1	2.290	6		
8	0	0	2.284	10	2.412	2
0	6	2	2.259	4		
6	0	2	2.238	2		
8	2	0	2.219	2		
2	6	2	2.194	5	2.251	1
6	6	0	2.176	12	2.299	5
4	8	0	2.053	3	2.207	1
3	3	3	1.963	2	1.960	2
9	1	1	1.910	3	2.032	2
5	1	3	1.874	3		
2	10	0	1.826	5	1.943	2
5	3	3	1.803	5	1.818	2

TABLE 2

X-ray powder data for natrolite and the K-exchanged form

^a Hashidate, Oomi-cho, Niigata pref., Japan.

^b Degree of K-exchange, 91.94%.

RESULTS AND DISCUSSION

Cation exchange treatment of natural natrolite has already been conducted by Hey [8], Belitskiy and Gabuda [9] and Belitskiy and Fedorov [10]. Hey [8] recognized a minor exchange with K- and Ag-solutions at room temperature. Belitskiy and Fedorov [10] investigated Na-K exchange with fused salts above 100°C, and suggested the impossibility of K-Na exchange in a water solution between 0 and 100°C. In the present exchange treatment, however, the K-exchanged forms, of which the degree of exchange of K was in the range 24.59–91.94%, were easily obtained. Here, the degree of K-exchange is expressed as $[K_2O/(Na_2O + K_2O + CaO + MgO)] \times 100\%$ (oxides, in moles).

X-ray powder data for the exchanged form (91.94%) are shown in Table 2, together with those of natural natrolite. Lattice parameters and cell volume obtained are: a = 19.338(4) Å, b = 19.810(6) Å, c = 6.499(1) Å, V = 2489(2) Å³. Indexing and estimation of lattice parameters were performed based on the same space group, *Fdd2*, as natrolite. As is to be expected from the relative sizes of Na and K ions, the K-exchanged form has a considerably larger unit cell volume than natrolite; the change is chiefly in *a* and *b* axes. The expansion of the unit cell is 10.4%. The DTA curves of the seven exchanged forms (Curves B–H) are shown in Fig. 1, together with that of the original natrolite (Curve A). Curve A shows the typical DTA patterns of natrolite, having a large endotherm at 330°C due to a one-step dehydration and a very small endotherm at 550°C corresponding to the phase transition $\alpha \rightarrow \beta$ -metanatrolite. With increasing degree of K-exchange, the endotherm

Fig. 1. DTA curves of natrolite and K-exchanged forms.

Fig. 2. The change in water content vs. degree of K-exchange.

at 330°C has a diminished peak area, shifting slightly to a lower temperature, and a new endotherm at 150°C begins to appear above 25%. The former peak disappears above 85%, with only the latter peak remaining. An additional small endotherm around 280°C is recognized between 43 (Curve C) and 75% (Curve F). The above results indicate that the endotherm at 330°C is caused by the loss of water molecules bonded to Na ions, while the 150°C peak is due to the removal of water molecules coordinated around K ions. The considerable decrease in dehydration temperature of the K-exchanged form, when compared with natrolite, can be explained by the decreased bonding force of water molecules to cations resulting from the larger size of K than Na and the expansion of the framework.

The water content of the K-exchanged form decreases remarkably with increasing degree of K-exchange above 60%, as shown in Fig. 2. It is estimated that 2.50 water molecules are coordinated to 2 Na ions in the original natrolite under 55% of relative humidity, while 1.57 water molecules are bonded to 2 K ions in the K-exchanged form (91.94%). The behavior of decreasing water content with increasing ionic size of exchanged monovalent cation is also recognized in other zeolites (see, for example, ref. 11).

The results of high temperature X-ray powder diffraction are illustrated in Fig. 3. In this diagram, the strongest reflections (220) of both natrolite and the K-exchanged form (91.94%) are shown as a function of temperature. As shown in Fig. 3, the (220) reflection of natrolite ($d_{220} = 6.51$ Å) of the dehydrated form (α -metanatrolite) appears and becomes stronger with increasing temperature. The 5.91 Å reflection begins to shift above 500°C, and reaches 6.17 Å at 600°C, as a result of the transformation of α - to β -metanatrolite. The 6.17 Å reflection disappears at 800°C. This result indicates that natrolite dehydrates above 300°C, and the dehydrated phase

Fig. 3. The intensities of (220) reflections of both natrolite and the K-exchanged form (91.94%) as a function of temperature.

 $(\beta$ -phase) decomposes at 800°C. In the case of the K-exchanged form, the intensity of the (220) reflection ($d_{220} = 6.92$ A) decreases very abruptly around 100°C, and at the same time a new reflection (d = 6.22 Å) appears. With increasing temperature, this reflection becomes gradually stronger up to 400°C and persists above 1000°C. This indicates that the exchanged form dehydrates at about 100°C and the structure of the dehydrated phase is maintained up to a higher temperature than 1000°C. Therefore, it is recognized that the thermal stability of natrolite is increased by K-exchange for Na.

ACKNOWLEDGMENT

We thank Mr. Shiro Kinouchi, Waseda University for his kind cooperation in electron probe microanalysis.

REFERENCES

- 1 G.J. Peng, Am. Mineral., 40 (1955) 834.
- 2 L.P. Van Reewijk, Am. Mineral., 57 (1972) 499.
- 3 L.P. Van Reewijk, The Thermal Dehydration of Natural Zeolites, Veeman and Zonen, Wageningen, 1974, pp. 30-35.
- 4 R. Otsuka, H. Hayashi and N. Imai, Mem. Sch. Sci. Eng., Waseda Univ., 34 (1972) 107.
- 5 A. Alberti and G. Vezzalini, Neues Jahrb. Mineral., Monatsh., (1983) 135.
- 6 G. Gottardi and E. Galli, Natural Zeolites, Springer Verlag, Berlin, 1985, pp. 48-49.
- 7 I.A. Belitskiy, Zap. Vscs. Mineral. Ova., 101 (1972) 52.
- 8 M.H. Hey, Mineral. Mag., 23 (1932) 243.
- 9 I.A. Belitskiy and S.P. Gabuda, Chem. Erd., 27 (1968) 79.
- 10 I.A. Belitskiy and I. Fedorov, in A.A. Godovikov and A.B. Ptitsyn (Eds.), Eksperiment. Issled. Miner., Akad. Nauk SSSR Inst. Geol. Geofiz., Novosibirsk, 1976, pp. 46-54.
- 11 R.M. Barrer, Trans. 7th Int. Ceramic Congr., London, 1960, p. 379.